

University of Houston – Clear Lake

SENG 5233

Lagrange, Euler, and JavaScript: A System Model

Joshua Pfeifer

5/8/19

 1

Abstract

A two mass, spring, and dampener system like that on many vehicle

suspensions was simulated visually using JavaScript on a webpage. The

math dictating the equations of motion was derived using the

Lagrangian technique, and the 2D simulation used a method of

estimation for the change in the system per frame much like the Euler

technique. The resulting simulation showed visually how, when placed

over rough ground, the top mass experienced the least jostling

acceleration when it was much heavier than the bottom mass, the spring

constant was at the minimum that still avoids bottoming-out, and the

dampening was high.

1 Introduction

Simulating a system can be done for many different reasons using many different methods, and making the

best choice of methods should come down to the specific use case. Why are you simulating the system?

What do you hope to gain from the simulation?

To explore the relationship between interconnected masses, spring, and dampener, I chose to visually

represent a suspension system with a 2D web-based simulation. The purpose was not to make a highly

accurate model for the development of an actual suspension system, but instead just to easily show how

modifying any aspect of the system changes its performance in general. This means that both the

mathematical representation of the system and its simulation over time do not have to be extremely

rigorous; instead, they just must correctly show trends.

Visual representations of systems, beyond just plots generated by MATLAB, are invaluable in effectively

communicating the intricacies of a system. Instead of needing to laboriously analyze graphs of velocity and

position over time, actually experiencing how the simulated suspension performs when subjected to

different terrains can provide clear and immediate results.

The next section elaborates on the suspension system, the third section covers mathematical modeling and

the simulation itself, and following is a discussion of the results and conclusions.

2 System Description
The suspension system consists of two masses connected vertically by a spring and a dampener. Note

neither masses are attached to a fixed point, so both can freefall due to gravity to the ground.

The spring has a spring constant of k, and the dampener has a dampening

coefficient of c. When m1 is at vertical location x1=0 and m2 is at x2=0,

the spring is fully relaxed with no potential energy stored.

Many assumptions were made about this system. The most glaring is that

only vertical motion is allowed; this is like a simple interpretation of a

car suspension where the motion of the wheel up and down with respect

to the car and the ground is only acknowledged vertically. M1 is always

assumed to be directly over m2, and it is assumed impossible to topple

the system over. Other assumptions are that m1 is the vehicle/rider, and

m2 is the wheel the suspension is attached to. It is also assumed m2 has

no “bounciness” with respect to hitting the ground – any downwards

acceleration and velocity of m2 simply disappear when touching the

ground. K is held to be constant throughout for the massless spring, no

Figure 1: Suspension System matter any external influences such as temperature, extreme stretch or

 2

compression conditions, etc. The same is assumed for c, including no special treatment for any extremely

rapid speeds of convergence or divergence of the masses. The masses are also dealt with as point masses,

where their shape and mass distribution make no difference.

3 Analysis

3.1 Mathematical Model
The mathematical method chosen to model the system was the Lagrangian technique. This method is most

beneficial in more complicated systems where Newtonian mechanics would require additional constraint

equations to stay in a Cartesian coordinate system [1], but it also works equally well for this system.

This technique models the system dynamics in a state function, i.e. a function (or set of functions) that

depends only on the current state of the system and not its path to get to that state. The past oscillations of

the suspension system should make no difference on any future

oscillations – only the current state of the two degrees of freedom (x1

and x2, plus their derivatives with respect to time) matter for future

predictions.

The first step was to identify the sources of kinetic (T), potential (V),

and dampening (D) energy. The masses have kinetic energy relative to

their speed (or the change in their position x), the spring has potential

energy based on how much it is stretched or compressed outside of its

relaxed position, the masses have potential energy due to their height,

_ Figure 2: Sources Energy and the dampener exerts a force relative to the speed of the masses.

The second step was to combine kinetic and potential equations into the system Lagrangian equation. This

is simply T – V, or kinetic minus potential energy.

Figure 3: Lagrangian

Next, the generalized force related to each degree of freedom (x1 and x2) was derived using partial

derivatives of the system Lagrangian and dampening equations. Partials with respect to x1, following the

Lagrangian formula, resulted in an equation that was rearranged to give the acceleration of x1. The same

was then done for x2, as can be seen in the equations below.

 Figure 4: Resulting Differential Equations

 3

3.2 Simulation
With the primary goal of providing a 2D visual representation of the system in action over time with easily

adjustable input parameters, the simple graphics capability of the HTML canvas element programmed

through JavaScript was chosen. Standard webpage sliders provided the user interface to alter masses plus

spring and dampening constants.

Translating the continuous Lagrangian model into something displayable on the canvas element on an

incremental, per-frame basis (at 30 frames-per-second) required another mathematical technique. The Euler

method of estimating differential equations was chosen as it was an easy direct application of the

Lagrangian math, just solved repetitively for each frame.

Given a first order differential equation with a known initial starting

point, future points are predicted with the Euler method by adding

the slope at that point times the step size [2]. This leads to an

estimation that progressively trends farther from the actual solution

to the differential equation (which is assumed unknown), but again

this simulation was not intended to be extremely accurate. A

graphical representation of this is provided from Wikipedia – the

Euler estimate is in red, and the actual solution is in blue. Note how

the slope of the blue line is followed from each red point to the next

point, and then accurately re-evaluated at the new point and followed

again the same set distance to the next point. Figure 5: Euler Estimation

The application of the Euler estimate applied to this Lagrangian, second-order differential equation was

done by (a) solving for the acceleration of each mass at each frame, (b) updating the velocity of each mass

per frame based on its newly-calculated acceleration, and finally (c) updating the position at each frame

based on new velocities. For example: if m1 had an initial position of 10, velocity of 5, and solving for

acceleration yielded an acceleration of -2, then (for this frame) velocity would be changed to 3, and then

position would be updated to 13. Note that based on how the system is being displayed with the canvas

element, these numbers refer to pixels (e.g. velocity of 3 moves the mass 3 pixels to the right per frame).

Mainly for aesthetic reasons, an astronaut riding a uni-motorcycle

with an exaggerated spring suspension on Mars was chosen to be the

visual representation of the system. The astronaut is fixed to the seat

and represents m1, and the wheel is m2. The dampener is notably not

displayed. The motion of the spring and masses are extremely

obvious and require no interpretation from graphs. Numerous details

are displayed at the top left of the screen, such as all input constants,

max acceleration seen by the rider, and velocities of the rider and

wheel. A score bar gives a general indication of what is desirable for

a suspension system – low accelerations to the rider make it increase

the quickest, high accelerations incur penalties, and bottoming-out

the suspension resets the score to zero.

The effect of the ground on the system also must be added to the

equations that otherwise assume the masses are free-floating. This was Figure 6: Simulation

done in the code as a separate per-frame calculation after acceleration

was calculated and propagated down to velocity and position. If the wheel touched the ground, all negative

acceleration and velocity of the wheel were cancelled out and its position was held to not fall below

ground.

Randomly-generated ramps provided the necessary varying terrain to subject the suspension to a variety of

tests. The horizontal motion of the system was simulated at a constant 5 pixels per frame (and thus far has

played no part in any calculations), and to maintain this constant speed ramps must be climbed faster or

slower dependent directly on their steepness. A vertical velocity was then imparted to the wheel anytime it

 4

touches a ramp to ensure it climbs the hypotenuse of the ramp at a speed equivalent to reaching the top

while maintaining a constant horizontal velocity. This is the equivalent of “hitting the throttle” based on the

steepness of the ramp, if the throttle position translated immediately into velocity.

Each of the four sliders were then adjusted either somewhat high or low to observe the 16 different cases

(24) of performance of the suspension system. Rider mass and wheel mass were varied, along with

weakening and stiffening the spring through k and adjusting the dampening through c.

4 Results
The minimum acceleration to the rider with the minimum additional oscillations while still not bottoming

out came from a relatively low spring constant (weak spring), high dampening, high rider mass, and low

wheel mass. This allowed the rider to go off the edge of ramps with a very gradual and non-oscillatory

transition to ground height due to the wheel shooting down extremely quickly to the new ground level and

then the spring and dampener working together to slowly transition the rider afterwards.

Note that just swinging the sliders to their high or low extremes often results in glitches in the simulation

due to the Euler estimate’s shortcomings. These glitches also happened under initial development under

almost any conditions when the acceleration, velocity, and position of each mass were calculated entirely

for one mass, and then the next. This was due to the new position and velocity of the first mass, that were

estimated for the next time step, were used in calculating the position and velocity of the other mass at the

time step prior, which led to runaway-conditions that resulted in what appears like an explosion as the

accelerations swing each frame to new extremes, ending in positive infinity and negative infinity values.

This was solved for most cases by calculating both accelerations first, and only afterwards propagating

down to both velocities and positions simultaneously each frame.

Similar glitches still happen when, for example, an extremely stiff spring is used in conjunction with

extremely-high dampening. If the time-step estimation was small enough, these glitches should

theoretically go away; however, at only 30fps they are still possible. An easy workaround is to adjust the

sliders to slightly less extremes and then restart the simulation.

5 Summary and Conclusions
To simulate the effects of modifying different aspects of a suspension system, the system was modeled

mathematically with the Lagrangian and animated with HTML canvas and JavaScript using Euler

estimation per frame. A “Cadillac”-like ride was achieved through a weak spring, large rider-to-wheel mass

ratio, and high dampening. The resulting 2D animated simulation is easy to interpret accurate general

trends from, but not extremely precise as an estimate for exact movements and tolerances.

Future work to improve the simulation would include ironing out the bugs from selecting too-extreme of

options that currently break the math. A first guess at a strategy for this would be to try and shrink the per-

frame interval to much smaller, such as by halving the acceleration equations and doubling the frame rate.

Additionally, the logic behind the interaction with the ground is not integrated well with the Lagrangian

math, so further improvements are possible in that area as well.

As of the writing of this paper, the simulation can be run by anyone on nearly any connected device at

joshuapfeifer.com/project.html. The code for this single webpage can be found through the website or

additionally in the Appendix in Section 7. With cartoon-style animations, any complicated system can be

made fun!

6 References
1. Lawrence, S. (2007, October 04). Basic Lagrangian Mechanics. Retrieved May 9, 2019, from

 http://www.physicsinsights.org/lagrange_1.html

2. Lakoba, T. (n.d.). Simple Euler Method and its Modifications [PDF]. University of Vermont. Retrieved

 May 9, 2019, from http://www.cems.uvm.edu/~tlakoba/math337/notes_1.pdf

http://www.joshuapfeifer.com/project.html
http://www.physicsinsights.org/lagrange_1.html
http://www.cems.uvm.edu/~tlakoba/math337/notes_1.pdf

 5

7 Appendix
Full code of project.html below (suggest view as separate file with Sublime Text for color-coding benefit):

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <style>

5. html {background-color: #a7a9ac;}

6. </style>

7. </head>

8. <body>

9. <title>Mars Ride</title>

10. <canvas id="gameCanvas" width="800" height="600"></canvas>

11. <div class="slideContainer">

12. <input type="range" min="1" max="26" id="springInput" value="10">

13. <input type="range" min="0" max="20" id="dampeningInput" value="4">

14. <input type="range" min="1" max="20" id="massRiderInput" value="10">

15. <input type="range" min="1" max="20" id="massWheelInput" value="10">

16. <button onclick="start()" type="button">Start</button>

17. <button onclick="reset()" type="button">Reset Values</button>

18. <p>Download

PowerPoint</p>

19. </div>

20. <script>

21. //game stuff here

22. var canvas;

23. var canvasContext;

24.

25. var score = 0;

26. var scoreLeftXPos;

27.

28. var g = 1; // gravity

29. var k, c; // spring and dampening constant pulled in each time new spring object created

30. var wheel, rider; // two masses - rider top and wheel bottom

31. var spring;

32. var ground = 0;

33. var swapOrder = true;

34. var maxAccel = 0;

35. var backgroundManager; //object with functions to control background

36. var mountains = []; //scrolling background objects

37. var trail = [];

38. var ramps = [];

39. var rampVelocity = 0; //vertical velocity needed to continue up the slope of ramp while maintaining

steady 5px/frame horizontal speed

40.

41. // contains main game loop

42. window.onload = function() {

43. canvas = document.getElementById('gameCanvas');

44. canvasContext = canvas.getContext('2d');

45.

46. setCanvasSize(); // fit game canvas to screen 1st time prior to any initial setup stuff

47.

48. // create objects

49. start();

50. backgroundManager = new backgroundManagerObject();//handles mountains

 6

51.

52. // set game loop

53. var framesPerSecond = 30;

54. setInterval(function() {

55. setCanvasSize(); // adjust as needed if window resized/phone turned

56. animateEverything();

57. }, 1000/framesPerSecond);

58. }

59.

60. function setCanvasSize() {

61. // get the size of the window's content area allowed for canvas

62. var w = window.innerWidth - 20;

63. var h = window.innerHeight - 100;

64.

65. // If canvas size doesn't fit window, change it

66. if(canvasContext.canvas.width !== w || canvasContext.canvas.height !== h) {

67. canvasContext.canvas.width = w;

68. canvasContext.canvas.height = h;

69. }

70. }

71.

72. function start() {

73. score = 0;

74. maxAccel = 0;

75. rampVelocity = 0;

76. wheel = new wheelObject();

77. rider = new riderObject();

78. spring = new springObject();

79. mountains = [];

80. mountains.push(new backgroundMountainObject());//immediately create first mountain

81. ramps = [];

82. ramps.push(new backgroundRampObject());//immediately throw in first ramp too

83. trail = []; // delete old dirt trail

84. for(let i=0;i<100;i++){//set all sections of trail to "undisturbed"

85. trail.push(0);

86. }

87. }

88.

89. function reset() {

90. //change sliders back to original positions

91. document.getElementById("springInput").value = "10";

92. document.getElementById("dampeningInput").value = "4";

93. document.getElementById("massRiderInput").value = "10";

94. document.getElementById("massWheelInput").value = "10";

95.

96. start(); //reset everything else

97. }

98.

99. function randFloat(min, max) {

100. let randNumFloat = Math.random() * (max - min) + min;

101. return randNumFloat;

102. }

103.
104. function wheelObject() {

105. this.position = 0; // used for math, 0 is stable position

106. this.xPos; // drawing position always centered

 7

107. this.yPos; // drawing position calculated based on this.position

108. this.radius = 50;

109. this.radians = 0; // used to draw rotating spokes

110.
111. this.m2 = parseFloat(document.getElementById("massWheelInput").value);//pull in latest mass

value from slider

112. this.velocity = 30;

113. this.acceleration;

114.
115. this.calcAccel = function() {

116. //do math

117. this.acceleration = (-this.m2*g - k*(this.position-rider.position) - c*(this.velocity -

rider.velocity))/this.m2;

118. }

119.
120. this.move = function() {

121. //apply acceleration

122. this.velocity+=this.acceleration;

123.
124. //move

125. this.position+=this.velocity;

126. this.xPos = canvas.width/2;

127. this.yPos = canvas.height/2 - this.position + 200;

128.

129. //apply ground logic

130. if(this.position < ground) {

131. this.position = ground;

132. this.velocity = Math.max(this.velocity, 0); // cancel out any downwards velocity

133. this.velocity = Math.max(this.velocity, rampVelocity); // ensure vertical velocity

at least fast enough to climb steepness of ramp while maintaining horizontal velocity

134. this.acceleration = Math.max(this.acceleration, 0); //cancel any downwards

accel

135. }

136.

137. //apply "disturbed trail" if wheel touching at sand level "ground", not on ramp "ground"

level

138. if(this.position == ground && ground==0){

139. trail.unshift(1);//disturbed

140. }else{

141. trail.unshift(0);//undisturbed

142. }

143. trail.pop();//keep overall trail same length

144. }

145.
146. this.draw = function() {

147. //draw wheel trail

148. for(let i=0;i<trail.length;i++){

149. if(trail[i]==1){

150. canvasContext.globalAlpha = 1 - (i/100);//fade out trail with distance

151. colorRect(this.xPos-((i+1)*5), canvas.height/2 + 200 + this.radius - 3,

5, 6, '#2b1d0e');

152. }

153. }

154. canvasContext.globalAlpha = 1; //reset back to no transparency

155.
156. drawCircle(this.xPos, this.yPos, this.radius, 'black'); //tire

 8

157. drawCircleOutline(this.xPos, this.yPos, this.radius*.65, 'white'); //rim outline

158.
159. //draw rotating spokes

160. canvasContext.lineWidth=2;

161. canvasContext.strokeStyle = 'white';

162. canvasContext.beginPath();

163. for(let i = 0; i < 12; i++) {

164. canvasContext.moveTo(this.xPos, this.yPos);

165. canvasContext.lineTo(this.xPos + this.radius * .65 * Math.cos(this.radians),

this.yPos + this.radius *.65 * Math.sin(this.radians));

166. this.radians = this.radians + Math.PI / 6; // moves 30 degrees for every tick,

making 12 ticks total

167. }

168. canvasContext.stroke();

169. canvasContext.lineWidth=1; // return lines to normal thickness

170. this.radians = this.radians+.1; // rotate a bit each frame

171. drawCircle(this.xPos, this.yPos, this.radius * .2, 'grey');

172. }

173. }

174.
175. function riderObject() {

176. this.position = 0; // used for math, 0 is stable position

177. this.xPos; // drawing position always centered

178. this.yPos; // drawing position calculated based on this.position

179. this.radius = 55;

180. this.armRadians = 0; //arms will flail according to acceleration

181.
182. this.m1 = parseFloat(document.getElementById("massRiderInput").value);//pull in latest mass

value from slider

183. this.velocity = 30;

184. this.acceleration;

185.
186. this.calcAccel = function() {

187. //do math

188. this.acceleration = (-this.m1*g + k*(wheel.position - this.position) + c*(wheel.velocity -

this.velocity))/this.m1;

189. if(Math.abs(this.acceleration)>maxAccel){

190. maxAccel=Math.abs(this.acceleration);

191. }

192. this.armRadians = this.armRadians + this.acceleration/70;//flail arm

193. }

194.
195. this.move = function() {

196. //apply acceleration

197. this.velocity+=this.acceleration;

198.
199. this.armRadians*=.9; //slowly try to return arm to horizontal

200.
201. //move

202. this.position+=this.velocity;

203. this.xPos = canvas.width/2;

204. this.yPos = canvas.height/2 - this.position;

205. //console.log(this.position);

206. }

207.
208. this.draw = function() {

 9

209. colorRect(this.xPos-40, this.yPos-10, 80, 20, '#654321'); //seat

210.

211. //Rider

212. canvasContext.save(); // save original canvas settings

213. canvasContext.translate(this.xPos, this.yPos); // move canvas coordinate system

214. canvasContext.lineWidth=2;

215. canvasContext.strokeStyle = 'grey';

216. canvasContext.fillStyle = 'white';

217. canvasContext.beginPath();

218. canvasContext.moveTo(40,-10); //top right corner of seat

219. canvasContext.lineTo(115,40);

220. canvasContext.lineTo(135,-20);

221. canvasContext.lineTo(120,-30);

222. canvasContext.lineTo(105,-5); //crook of shoe and leg

223. canvasContext.lineTo(40,-50);

224. canvasContext.lineTo(5,-50);

225. canvasContext.lineTo(5,-220);

226. canvasContext.lineTo(-50,-220);

227. canvasContext.lineTo(-50,-170);

228. canvasContext.lineTo(-85,-170);

229. canvasContext.lineTo(-85,-50);

230. canvasContext.lineTo(-50,-50);

231. canvasContext.lineTo(-50,-10);

232. canvasContext.closePath();

233. canvasContext.fill();

234. canvasContext.stroke();

235.

236. colorRect(-40, -210, 45, 35, 'black'); //visor

237.

238. //draw arm

239. canvasContext.translate(-40, -140); // further move canvas to top left arm

240. canvasContext.rotate(this.armRadians); //draw arm at correct angle from body

241. colorRectandOutline(0, 0, 125, 30, 'white', 'grey') // arm rectangle

242. // Flag on arm

243. colorRect(5, 5, 16, 9, 'white');//white flag background

244. canvasContext.lineWidth=1;

245. canvasContext.strokeStyle = 'red';

246. canvasContext.beginPath();

247. for(let i = 5; i <= 14; i += 9 / 4) {//draw four evenly-spaced stripes

248. canvasContext.moveTo(5, i);

249. canvasContext.lineTo(21, i);

250. }

251. canvasContext.stroke();

252. colorRect(5, 5, 8, 4.5, '#000080');//draw blue star section

253. canvasContext.restore();//return to normal canvas coordinates, etc.

254. }

255. }

256.
257. function updateScore() {

258. if(Math.abs(rider.acceleration)<10){

259. score = score + 1/Math.max(1,Math.pow(rider.acceleration,2));//add to score faster the

smaller the accel

260. }else{

261. score = Math.max(0,score - Math.abs(rider.acceleration))//if over reasonable accel,

deduct directly based on accel

262. }

 10

263. if(rider.yPos>(wheel.yPos-wheel.radius)||maxAccel>1000) score = 0;//if bottom out or exploded,

get rid of all points

264. }

265.
266. function springObject() {

267. this.unAdjustedK = parseFloat(document.getElementById("springInput").value);//pull in latest

spring value

268. if(this.unAdjustedK<=10){

269. k=this.unAdjustedK/10;

270. }else{

271. k=this.unAdjustedK-9;

272. }

273. c = parseFloat(document.getElementById("dampeningInput").value)/10;//pull in latest dampening

value and adjust

274. this.Color = 'black';

275. this.numLinks = 9; // number of divisions of spring

276.
277. // below calculated every frame

278. this.center; //center of spring always readjusted to center of rider (which should stay center of

screen)

279. this.bottomEndPos;

280. this.topEndPos;

281. this.pointSpacing;

282.
283. // instantiate spring tip points (this.numLinks - 1) with x, y coordinates that will be overridden

later

284. this.point1 = [0,0];

285. this.point2 = [0,0];

286. this.point3 = [0,0];

287. this.point4 = [0,0];

288. this.point5 = [0,0];

289. this.point6 = [0,0];

290. this.point7 = [0,0];

291. this.point8 = [0,0];

292.
293. this.draw = function() {

294. //this.rightEndPos = cart.xPos;

295. this.center = rider.xPos;

296. this.bottomEndPos = wheel.yPos;

297. this.topEndPos = rider.yPos;

298. this.length = Math.max(1,this.bottomEndPos - this.topEndPos); //keep a min length

299. this.pointSpacing = this.length / this.numLinks;

300. //Set link y positions

301. this.point1[1] = this.topEndPos + this.pointSpacing;

302. this.point2[1] = this.topEndPos + this.pointSpacing*2;

303. this.point3[1] = this.topEndPos + this.pointSpacing*3;

304. this.point4[1] = this.topEndPos + this.pointSpacing*4;

305. this.point5[1] = this.topEndPos + this.pointSpacing*5;

306. this.point6[1] = this.topEndPos + this.pointSpacing*6;

307. this.point7[1] = this.topEndPos + this.pointSpacing*7;

308. this.point8[1] = this.topEndPos + this.pointSpacing*8;

309. //set link x positions

310. this.point1[0] = this.center-20;

311. this.point2[0] = this.center+20;

312. this.point3[0] = this.center-20;

313. this.point4[0] = this.center+20;

 11

314. this.point5[0] = this.center-20;

315. this.point6[0] = this.center+20;

316. this.point7[0] = this.center-20;

317. this.point8[0] = this.center+20;

318.
319. canvasContext.lineWidth=5;

320. canvasContext.strokeStyle = this.Color;

321. canvasContext.beginPath();

322. canvasContext.moveTo(this.center, this.topEndPos); // start at center of rider

323. canvasContext.lineTo(this.point1[0], this.point1[1]);

324. canvasContext.lineTo(this.point2[0], this.point2[1]);

325. canvasContext.lineTo(this.point3[0], this.point3[1]);

326. canvasContext.lineTo(this.point4[0], this.point4[1]);

327. canvasContext.lineTo(this.point5[0], this.point5[1]);

328. canvasContext.lineTo(this.point6[0], this.point6[1]);

329. canvasContext.lineTo(this.point7[0], this.point7[1]);

330. canvasContext.lineTo(this.point8[0], this.point8[1]);

331. canvasContext.lineTo(this.center, this.bottomEndPos); // end spring at center of rider

332. canvasContext.stroke();

333. canvasContext.lineWidth=1; //return lines to normal size

334. }

335. }

336.
337. function backgroundMountainObject() {

338. this.yBottom; // will be recalculated each frame in case window size changes

339. this.xLeftPos = canvas.width+10; // start just off screen

340. this.xRightPos = this.xLeftPos + randFloat(50,canvas.width); // at least 50px wide up to width of

screen

341. this.xMiddlePos = randFloat(this.xLeftPos, this.xRightPos); // middle could be anywhere between

left and right

342. this.height = randFloat(10,canvas.height/2+200); // varies from 10px above ground to little over

height of screen

343. this.speed = 5;

344.
345. this.move = function() {

346. this.xLeftPos-=this.speed;

347. this.xMiddlePos-=this.speed;

348. this.xRightPos-=this.speed;

349. this.yBottom = canvas.height/2 + 200;

350. }

351.
352. this.draw = function() {

353. let grad =

canvasContext.createLinearGradient(this.xRightPos,this.yBottom,this.xLeftPos,this.yBottom-

this.height); //shade bottom right to top left

354. grad.addColorStop(0,'#3f2a14');

355. grad.addColorStop(1,'#A0522D');

356. canvasContext.fillStyle = grad;

357. canvasContext.beginPath();

358. canvasContext.moveTo(this.xLeftPos,this.yBottom);

359. canvasContext.lineTo(this.xMiddlePos,this.yBottom-this.height);

360. canvasContext.lineTo(this.xRightPos,this.yBottom);

361. canvasContext.closePath();

362. canvasContext.fill();

363. }

364. }

 12

365.
366. function backgroundRampObject() {

367. //randomly sized right triangle ramps

368. this.yBottom; // will be recalculated each frame in case window size changes

369. this.xLeftPos = canvas.width+10; // start just off screen

370. this.xRightPos = this.xLeftPos + randFloat(50,500);

371. this.height = randFloat(30,200);

372. this.speed = 5; //scrolling horizontally speed

373. this.slope = this.height / (this.xRightPos-this.xLeftPos);

374. this.impartVelocity = this.slope * this.speed; //per frame change in y

375. this.centerScreenHeight;

376.
377. this.move = function() {

378. this.xLeftPos-=this.speed;

379. this.xRightPos-=this.speed;

380. this.yBottom = canvas.height/2 + 200 + wheel.radius;

381.
382. //update height under wheel in center screen if applicable

383. if(this.xLeftPos < canvas.width/2 && this.xRightPos > canvas.width/2){//then wheel is

somewhere in middle of ramp

384. this.centerScreenHeight = (canvas.width/2 - this.xLeftPos) * this.slope; //#

pixels above zero ground level

385. }else{

386. this.centerScreenHeight = 0;

387. }

388.
389. }

390.
391. this.draw = function() {

392. let grad =

canvasContext.createLinearGradient(this.xRightPos,this.yBottom,this.xLeftPos,this.yBottom-

this.height); //shade bottom right to top left

393. grad.addColorStop(0,'#9998dc');

394. grad.addColorStop(1,'white');

395. canvasContext.fillStyle = grad;

396. canvasContext.strokeStyle = 'black';

397. canvasContext.beginPath();

398. canvasContext.moveTo(this.xLeftPos,this.yBottom);

399. canvasContext.lineTo(this.xRightPos,this.yBottom-this.height);

400. canvasContext.lineTo(this.xRightPos,this.yBottom);

401. canvasContext.closePath();

402. canvasContext.fill();

403. canvasContext.stroke();

404. }

405. }

406.
407. function backgroundManagerObject() {

408. this.mountainTimeDelay = randFloat(30,400); //#of frames to wait until creating new mountain

409. this.rampTimeDelay = randFloat(15,100); //delay for ramps

410.
411. this.handle = function() {

412. this.mountainTimeDelay-=1;

413. this.rampTimeDelay-=1;

414.
415. if(this.mountainTimeDelay<=0){//if timer runs out, make another mountain

416. this.createMountain();

 13

417. }

418.
419. if(this.rampTimeDelay<=0){//if timer runs out, make another ramp

420. this.createRamp();

421. }

422.
423. //move and draw stuff

424. colorRectGrad(0, 0, canvas.width, canvas.height, '#ffffcc', '#ffa4a4');//sky

425. colorRectGrad(0, canvas.height/2+200, canvas.width, canvas.height-

(canvas.height/2+200), '#A0522D', '#3f2a14');//ground

426.
427. for(let i=0;i<mountains.length;i++){//move and draw each mountain

428. mountains[i].move();

429. mountains[i].draw();

430. }

431.
432. //ramp shennanigans

433. ground=0;//reset each frame, and only overwrite if necessary

434. rampVelocity=0;

435. for(let i=0;i<ramps.length;i++){//move and draw each ramp, plus update ground and

acceleration if needed

436. ramps[i].move();

437. ramps[i].draw();

438. if (ramps[i].centerScreenHeight>ground){

439. ground=ramps[i].centerScreenHeight;

440. rampVelocity=ramps[i].impartVelocity;

441. }

442. }

443. }

444.
445. this.createMountain = function() {

446. mountains.unshift(new backgroundMountainObject());//add new object to beginning of

array, not end

447. this.mountainTimeDelay = randFloat(30,400); //reset timer

448. if(mountains.length > 20){ //don't waste memory/processing time with past mountains

449. mountains.pop();

450. }

451. }

452.
453. this.createRamp = function() {

454. ramps.unshift(new backgroundRampObject());//add new object to beginning of array, not

end

455. this.rampTimeDelay = randFloat(15,100); //reset timer

456. if(ramps.length > 20){ //don't waste memory/processing time with past ramps

457. ramps.pop();

458. }

459. }

460. }

461.
462. function animateEverything() {

463. //Do math

464. wheel.calcAccel();

465. rider.calcAccel();

466. //apply acceleration to velocity and finally position

467. wheel.move();

468. rider.move();

 14

469.
470. updateScore();

471.
472. //Draw in new locations

473. backgroundManager.handle(); //draws background + moving background objects

474. spring.draw();

475. wheel.draw();

476. rider.draw();

477.
478. //score

479. scoreLeftXPos = Math.max(200,canvas.width - (canvas.width/4000*score)-10);

480. drawText('Score:'+Math.round(score), 20, 'black', canvas.width - 110, 30);

481. colorRectGrad(scoreLeftXPos, 40, canvas.width-scoreLeftXPos-10, 20, '#00bfff', 'blue');

482.
483. //text

484. drawText('Rider Mass = '+rider.m1, 20, 'black', 10, 30);

485. drawText('Wheel Mass = '+wheel.m2, 20, 'black', 10, 60);

486. drawText('Spring constant = '+k, 20, 'black', 10, 90);

487. drawText('Dampening constant = '+c, 20, 'black', 10, 120);

488. drawText('Rider Velocity = '+Math.round(rider.velocity), 20, 'black', 10, 150);

489. drawText('Wheel Velocity = '+Math.round(wheel.velocity), 20, 'black', 10, 180);

490. drawText('Max Rider Acceleration = '+Math.round(maxAccel), 20, 'black', 10, 210);

491. drawText('Adjustable inputs:', 20, 'white', 10, canvas.height-60);

492. drawText('k', 20, 'white', 55, canvas.height-20);

493. drawText('c', 20, 'white', 200, canvas.height-20);

494. drawText('mRider', 20, 'white', 310, canvas.height-20);

495. drawText('mWheel', 20, 'white', 440, canvas.height-20);

496. }

497.
498. function drawText(text, size, color, leftX, bottomY) {

499. let fontCombo = size.toString() + 'px sans-serif';

500. canvasContext.font = fontCombo;

501. canvasContext.fillStyle = color;

502. canvasContext.fillText(text, leftX, bottomY);

503. }

504.
505. function drawCircle(centerX, centerY, radius, drawColor) {

506. canvasContext.fillStyle = drawColor;

507. canvasContext.beginPath();

508. //Draw including start and stop radian positions and clockwise

509. canvasContext.arc(centerX, centerY, radius, 0, Math.PI*2, true);

510. canvasContext.fill();

511. }

512.
513. function drawCircleOutline(centerX, centerY, radius, drawColor) {

514. canvasContext.strokeStyle = drawColor;

515. canvasContext.beginPath();

516. //Draw including start and stop radian positions and clockwise

517. canvasContext.arc(centerX, centerY, radius, 0, Math.PI*2, true);

518. canvasContext.stroke();

519. }

520.
521. function colorRect(leftX, topY, width, height, drawColor) {

522. canvasContext.fillStyle = drawColor;

523. canvasContext.beginPath();

524. canvasContext.fillRect(leftX, topY, width, height);

 15

525. }

526.
527. function colorRectandOutline(leftX, topY, width, height, fillColor, outlineColor) {

528. canvasContext.fillStyle = fillColor;

529. canvasContext.strokeStyle = outlineColor;

530. canvasContext.beginPath();

531. canvasContext.rect(leftX, topY, width, height);

532. canvasContext.fill();

533. canvasContext.stroke();

534. }

535.
536. function colorRectGrad(leftX, topY, width, height, drawColor1, drawColor2) {

537. let grad = canvasContext.createLinearGradient(leftX+width/2,topY,leftX+width/2,topY+height);

538. grad.addColorStop(0,drawColor1);

539. grad.addColorStop(1,drawColor2);

540. canvasContext.fillStyle = grad;

541. canvasContext.fillRect(leftX, topY, width, height);

542. }

543.
544. </script>

545. </body>

546. </html>

